GPU-Based Multi-start Local Search Algorithms

نویسندگان

  • Thé Van Luong
  • Nouredine Melab
  • El-Ghazali Talbi
چکیده

In practice, combinatorial optimization problems are complex and computationally time-intensive. Local search algorithms are powerful heuristics which allow to significantly reduce the computation time cost of the solution exploration space. In these algorithms, the multistart model may improve the quality and the robustness of the obtained solutions. However, solving large size and time-intensive optimization problems with this model requires a large amount of computational resources. GPU computing is recently revealed as a powerful way to harness these resources. In this paper, the focus is on the multi-start model for local search algorithms on GPU. We address its re-design, implementation and associated issues related to the GPU execution context. The preliminary results demonstrate the effectiveness of the proposed approaches and their capabilities to exploit the GPU architecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lot Streaming in No-wait Multi Product Flowshop Considering Sequence Dependent Setup Times and Position Based Learning Factors

This paper considers a no-wait multi product flowshop scheduling problem with sequence dependent setup times. Lot streaming divide the lots of products into portions called sublots in order to reduce the lead times and work-in-process, and increase the machine utilization rates. The objective is to minimize the makespan. To clarify the system, mathematical model of the problem is presented. Sin...

متن کامل

Local Search Based on Genetic Algorithms

Genetic Algorithms have been seen as search procedures that can quickly locate high performance regions of vast and complex search spaces, but they are not well suited for fine-tuning solutions, which are very close to optimal ones. However, genetic algorithms may be specifically designed to provide an effective local search as well. In fact, several genetic algorithm models have recently been ...

متن کامل

GPU-Based Approaches for Multiobjective Local Search Algorithms. A Case Study: The Flowshop Scheduling Problem

Multiobjective local search algorithms are efficient methods to solve complex problems in science and industry. Even if these heuristics allow to significantly reduce the computational time of the solution search space exploration, this latter cost remains exorbitant when very large problem instances are to be solved. As a result, the use of GPU computing has been recently revealed as an effici...

متن کامل

A Diversified Multi-Start Algorithm for Unconstrained Binary Quadratic Problems Leveraging the Graphics Processor Unit

Multi-start algorithms are a common and effective tool for metaheuristic searches. In this paper we amplify multi-start capabilities by employing the parallel processing power of the graphics processer unit (GPU) to quickly generate a diverse starting set of solutions for the Unconstrained Binary Quadratic Optimization Problem which are evaluated and used to implement screening methods to selec...

متن کامل

A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms

In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011